Security of supply
Your management pack
In an emergency your contacts for this site are:

<table>
<thead>
<tr>
<th>Contact</th>
<th>Name</th>
<th>Position</th>
<th>Department</th>
<th>Telephone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remember
In the event of an emergency your designated contacts need to be available 24 hours a day, 7 days a week. Please ensure that all the numbers provided allow for this.

You must advise us immediately if your emergency contacts change. You can do this online at eonenergy.com/emergencycontacts.
This guide is to help your business should it be affected by an energy supply emergency. This may be a rota disconnection for power or legislation which requires you to turn off gas supplies during a time of shortage.

Over the following pages you’ll find out more about the different types of emergencies, how notification is given and how your business might be affected, together with useful information about preparing for a supply emergency and guidance on what to do when normal supply is resumed.

You’ll also find advice on energy management, suggestions for improving efficiency and reducing your consumption and some useful contacts for further help and advice.

With supply influenced by a wide range of events it’s difficult to predict exactly if, when or where an emergency might happen. But the more prepared you are, the more you’ll be able to minimise disruption to your business, so it’s vital that you’re prepared.
The supply of gas and power is linked to global, political and economic events, and in extreme situations these could affect supply.

Oil, coal, freight, Liquefied Natural Gas (LNG) and the European gas and power markets are increasingly connected in a global chain that heavily influences the availability of gas, our principle source of energy.

Coming into winter 2010/11, the nuclear fleet, and most other technologies, are expected to have a higher level of availability than has been seen in recent winters. We’ve also seen improvements to infrastructure, including pipelines to Norway and LNG terminals. In addition there has also been a reduction in demand due to the economic downturn. We believe that, given normal conditions and in the absence of any unforeseen issues, the system should be able to cope relatively easily during the winter of 2010/11. However, businesses still need to be prepared for potential issues caused by cold weather, supply failures and global gas demand.

There are gas market arrangements in place to help co-ordinate a market response (also known as a demand side response) and reduce the likelihood of emergency procedures being required. One of these is more commonly known as a Gas Balancing Alert (GBA). This is a signal issued by National Grid to the market to indicate that demand reduction is required in an attempt to avert an emergency. In the winter of 2009/10 there were four GBA’s declared by National Grid.

There are a number of factors that give cause for concern:

- A fall in gas production from the UK Continental Shelf (UKCS).
- Increased dependence on LNG and storage to meet winter peaks.
- The possibility that LNG tankers may go elsewhere as they did during winter 2005/2006 when commodity prices in the US rose following Hurricane Katrina.
- Reduction in the number of interruptible supply contracts across the UK, meaning a narrower margin before customers on a firm (not interruptible) contract are required to stop using gas.
What we’re doing in preparation

As a responsible company we have plans in place in case of difficulties, these include:

• We’re in the final stages of commissioning the 1,275MW Isle of Grain gas-fired combined heat and power station.

• With our joint venture partners, we are planning for new nuclear power stations at Oldbury-on-Severn in Gloucestershire and at Wylfa on Anglesey, capable of generating up to 6GW of new nuclear power.

• Investigating the possibility of running the Corby gas-fired power station (a joint venture with ESB) on distillate.

• Continuing to work with our sister companies in the E.ON Group to explore ways in which, should there be issues over UK gas supply, we could free up European gas for the UK market.

• Growing the number of our large energy customers on flexible products, which allows them to sell gas back to us in times of high prices and demand.

• Increasing our gas storage capacity by developing storage facilities in the salt caverns of Holford, Cheshire. Work started in August 2005 and once completed the 162 million cubic metre development will be able to withdraw gas at a rate of 16mcm/day, equivalent to the domestic needs of around 3.9m homes. This will make it one of the fastest churn facilities in the UK, allowing greater flexibility in terms of quickly moving large volumes of gas in and out of ‘the National Transmission System (NTS)’.
Gas emergencies

What does a gas emergency mean for businesses with an interruptible contract?

Some organisations who use a large amount of gas (over 200k therms/5.8GWh per annum) have tendered for a supply contract which requires them to stop using gas or reduce the amount of gas when asked. This is known as an interruptible contract.

• In an emergency the normal notice period (four hours) is waived and you’ll be asked to stop using gas as soon as possible.
• Once notified by your supplier, affected sites must stop using gas as soon as possible without danger to life. Sites must stop using gas at, or before, the time indicated on the interruption notice.
• The transporter can isolate a site if it does not stop using gas quickly enough.
• Businesses that don’t stop using gas when instructed to do so by their transporter could be prosecuted by the Health and Safety Executive.
• Interruptible sites must not recommence their supply until notified to do so.
• Interruptible Firm Allowances/Partial Interruption Agreements are not effective during an emergency.

What does a gas emergency mean to large businesses on a firm contract?

Other businesses not on an interruptible contract are on what’s called a firm contract. However during an emergency they may still be asked to stop using gas.

• Businesses will be asked to stop using gas as soon as possible without danger to life.
• It’s expected that the largest gas consuming businesses will be instructed to switch off first.
• The same instruction will then cascade down to other businesses according to their size and consumption. You could be isolated if you fail to act on an instruction to stop using gas from a transporter or supplier.
• To knowingly fail to follow an instruction to stop using gas is a criminal offence.

As part of your Terms and Conditions you’re required to provide your supplier with emergency contact details in case a gas supply emergency is declared by your transporter or the Network Emergency Co-ordinator (NEC).

You can update your emergency contact details online at eonenergy.com/emergencycontacts
Emergencies can arise from various circumstances. A gas supply emergency is defined as ‘an emergency endangering persons and arising from loss of pressure in a network or any part thereof.’

Gas supply emergencies are identified as either a Local Gas Supply Emergency or a Network Gas Supply Emergency.

Local Gas Supply Emergency (GSE)
This is caused by a loss of pressure on one of the distribution networks. As it doesn’t affect the national supply situation, it’s usually tackled locally by the Distribution Network Operator.

Network Gas Supply Emergency (NGSE)
This is an emergency on the National Transmission System (NTS) and is managed by the Network Emergency Co-ordinator (NEC). There are two different types of national emergency, these are:

A **Gas Deficit Emergency (GDE)**
This means there’s insufficient gas entering the network to meet demand and to maintain safe pressure. If there isn’t enough gas, the system could fail. The most likely scenario for this is a very cold day, or a serious supply problem. Such a situation could very quickly lead to large business users being instructed to turn off their gas-using equipment.

A GDE can also happen because of a potential or actual breach of a Gas Safety Monitor, known as a Gas Safety Monitor Breach. It’s essential that a certain amount of gas is always available in storage throughout the winter. This is needed to deal with periods where there are severe weather conditions, or other supply and demand problems. For this reason gas storage has a ‘Monitor’ level. There are two Safety Monitors

i) Long-range storage (LRS), which is the large Rough field gas storage facility.

ii) Medium-and short range storage (MRS and SRS) which includes the salt cavities at Hornsea and Hole House Farm, the onshore depleted fields Hatfield Moors and Humbly Grove and the LNG storage facilities.

These Monitors are updated and published on the National Grid website together with a more detailed description and can be viewed at nationalgrid.com/uk/gas/data/dsr. National Grid will issue a Gas Balancing Alert when there are two days worth of gas available for any storage category.

A Critical Transportation Constraint
This is a system problem where the transporter cannot maintain pressure to specific locations. This could be caused by the failure of a pipeline or a compressor. These types of situation are likely to be resolved by local interruption and customer response.
The regulatory framework for a gas supply emergency is set out in the Gas Safety (Management) Regulations 1996. The GS(M)R requires National Grid and the other gas transporters to prepare Safety Cases which have to be approved by the Health and Safety Executive.

The Gas Balancing Alert (GBA)
The GBA was introduced during winter 2005/06 to facilitate a demand side response. It’s a mechanism to signal to gas users the likelihood of demand side response being required in order to balance supply and demand to try to prevent an emergency.

The trigger for issuing a GBA happens when the demand forecast is greater than or equal to anticipated supplies. A GBA will normally be issued after National Grid carries out their demand forecast for the following day (currently 14:00 and 24:00). However, a GBA can be issued within the gas day should there be a large supply loss.

Demand side response
It’s possible that a significant response from businesses may be required if there are supply restrictions or colder than normal weather. This may also be needed to prevent an emergency from occurring. The key principle is to encourage suppliers and consumers to help prevent a potential emergency from becoming an actual emergency.

If an emergency is declared the Network Emergency Co-ordinator (NEC) can instruct large consumers to stop using gas to protect the system and to maintain safety on the networks.

If there’s an insufficient response from businesses, the extent and duration of an emergency will be greater. That’s why it’s crucial to make the necessary preparations and introduce a contingency plan to help both the system, and reduce the effect an emergency could have on your business.

The Network Emergency Co-ordinator (NEC) is responsible for co-ordinating actions across affected parts of the network to try to prevent a supply emergency developing, Where it cannot be prevented the NEC must make timely decisions to minimise danger.
Emergency stages

Five clearly identified stages are set out in the gas emergency procedures. The procedures are overseen by the Network Emergency Co-ordinator (NEC) and include measures designed to help prevent or mitigate the impact of an emergency, through to safe restoration of supplies once an emergency is over.

These stages may be declared sequentially or a number of stages may be declared together depending on the severity of the actual or potential supply emergency.

Stage one - Actions to avoid an emergency being declared

If the market response isn’t sufficient, the NEC can declare a stage one situation – also known as a supply side response. The possible actions which could be taken, in any order, depend on the type of emergency, for example:

Gas Deficit Emergency or Critical Transportation Constraint

- Emergency interruption at interruptible sites.
- Maximisation of gas storage.
- Admission of Emergency Specification gas onto the system (for example gas of lower quality than normally permitted).
- Maximising pressure in the pipes.
- Public appeals to reduce gas use or stop using gas.

Gas Safety Monitor Breach

- Emergency interruption at interruptible sites.
- Shippers and storage operators instructed to amend storage flows.
- Public appeals to reduce gas use or stop using gas.

At this point the emergency may become an industry-wide issue and the Government would take control.

Stage two - The Emergency Declaration

Gas Deficit Emergency or Critical Transportation Constraint

- Trading on the normal market is suspended (Gas Deficit Emergency only).
- Maximisation of beach gas.
- Public appeals to reduce gas use or stop using gas.

Gas Safety Monitor Breach

- Trading on the normal market is suspended.
- Maximisation of deliveries to storage.
- Public appeals to reduce gas use or stop using gas.

The NEC specifies the reduction needed in gas demand by FLS. During FLS businesses not on an interruptible supply will be told to stop using gas in order to maintain pressure on the network.

The largest consumers are likely to be the first to be instructed to switch off and this would then cascade down. If demand is still too high, the NEC would then appeal to smaller users to switch off.

Stage four - Allocation and Isolation

If Firm Load Shedding is not adequate to bring the system back into balance, the NEC will declare a stage four and commence allocating gas to regional networks.

These networks will then implement isolation plans to reduce demand.

Stage five - Restoration

The final stage of the process is restoration where the system will be brought back to normal and the commercial market will eventually be allowed to take over again.
How to manage a gas emergency

How sites with an interruptible contract are notified

1. National Grid (or your local transporter) identifies a need to interrupt supply.
2. National Grid (or your local transporter) informs your supplier of the need to interrupt supply.
3. Your supplier phones you with notice of the need to interrupt with effect from a specified time. This will normally be confirmed with a fax; however in an emergency this may not be possible.
4. You confirm to your supplier by fax that you will interrupt supply as instructed.
5. Your supplier confirms to National Grid that you will interrupt supply to your site(s) at the specified time.
6. National Grid may also contact you directly.

How Firm Load Shedding is notified (sites not on an interruptible contract)

1. The Network Emergency Co-ordinator (NEC) identifies a need for Firm Load Shedding.
2. The NEC informs local transporters of the need to shed load.
3. Your local transporter will telephone your emergency contacts advising that you must turn off any gas-using equipment as soon as possible without danger to life.
4. You may receive a fax from your local transporter confirming the instruction (this may be some time after the telephone call).
5. You turn off any gas-using equipment and appliances as quickly and safely as possible.

Actions required from your emergency contacts

1. All your designated emergency contacts (for each of your sites if you have multiple sites) must be familiar with your procedures for dealing with a gas supply emergency.
2. Designated personnel should know where to turn off any gas-using equipment should you be instructed to turn off your gas.
3. You should keep a site plan with these locations in an easily identifiable place.
4. You should have a contingency plan in place to protect your people, plant and processes and have an appropriate restoration plan.
5. You should ensure ongoing maintenance of alternative fuel supplies and appropriate transportation means at all times.
6. Your designated personnel should be familiar with all your plans and documentation.
7. If you are contacted directly by National Grid indicating you should switch off your supply you must comply with this by turning off any gas-using equipment. DO NOT turn off your supply at the main inlet to your organisation. If you do this, when supply is restored you will need a Gas Safe Registered™ engineer to restore supply to your business.

Restoration

1. National Grid (or your local transporter) determines when supplies can be restored.
2. Your supplier will inform you if you are on an interruptible contract and National Grid will inform you if you are on a firm contract when you may resume taking gas from the system.
Emergency strategy preparation – things to consider

Have you made contingency arrangements?

Make sure that your contingency plan suits the technical and organisational needs of your business.

For instance, do your arrangements consider both a gas and/or electricity emergency? And are all items of standby equipment fully maintained and serviceable?

Look at alternative fuels (and the environmental impact of changing fuels) and how easy it is to guarantee supply. It is worth reviewing your working practices too. Look at possible shift pattern changes, amendments to your core hours of business or reducing production.

Who in your organisation is involved in power emergency situations?

As part of your contract with your supplier, you’re required to provide and maintain accurate emergency contact information. It’s your responsibility to inform your supplier immediately of any changes to your emergency contact details. If you’re an E.ON customer, you can do this online at eonenergy.com/emergencycontacts.

Your emergency contact should be someone who is in a position to accept the instruction from the gas transporter, and be able to arrange for all effective premises to turn off all gas using equipment.

The individual’s contact details need to include either:

- Title, First Name, Initials and Surname, or
- Job Title eg Duty Manager, Security Officer

If your emergency contact can be contacted 24 hours a day at the premise, you’ll need to provide their details and telephone number.

If not, then you’ll need to provide three separate emergency contacts, each with up to two telephone numbers. Any number(s) provided must not be diverted to an answer machine.

If your site has an annual gas consumption greater than 1,465,000 kWh, you’ll also need to provide a fax number for the site, capable of receiving transmissions 24 hours a day.
Does your business have a procedure in place to deal with a gas and/or electricity emergency?
Any procedures should be tested and communicated to all staff to ensure that everyone is aware of their role and responsibilities. If asked to stop using gas by the transporter, businesses should safely turn off any equipment or appliance that uses gas as soon as possible without danger to life.

Planning for restoration of supply
By carrying out an analysis on the impact to your business, you can make more informed decisions. By doing this you’ll be able to identify which critical business processes to prioritise when supply is resumed.

Where can you find more information?
Monitor news, weather and information services – see our useful contacts and links section.

Priority consumers
Transporters are obliged to maintain gas supplies to customers with priority status for as long as possible and to re-establish supplies as soon as possible after the emergency has ended.

Priority status can be granted where:
• A failure in the supply to a business premises could put lives at risk, for example, hospitals, homes for the elderly or disabled people.
• Immediate shutdown to premises would incur damage to plant in excess of £50m, for example, furnaces and glass works.

If you think you could be eligible for priority status, contact your energy supplier.
Planning your emergency strategy preparation

Understanding

Have you assessed how a gas supply emergency would impact your business?

What are your responsibilities during an emergency?

How can your company ensure business continuity during an emergency? For more advice go to thebci.org

How can your business monitor the gas supply situation? For more advice go to nationalgrid/uk/gas/data/dsr

Have you considered the impact of a power emergency to your business?

Have you assessed how a gas or power emergency would affect your suppliers?

Company

Do you have a contingency plan in case of a gas supply emergency?

Can you identify a team within your business to deal with an emergency response?

Has your emergency plan been communicated to all staff, and is it easily accessible to all?

Will you need to reduce production and send staff home?

What level of production could be sustained with stand-by equipment?

Are all items of stand-by equipment fully maintained and serviceable?

What are the environmental impacts of changing fuel?

Is Environment Agency permission needed? If so, do you know your permit number?

Do you need transportation in place to move stand-by fuel?

Do you have a communications plan covering all stakeholders if there is disruption to production?

Site specific

Does your energy supplier have up-to-date emergency contact details for each of your sites?

Is someone from each site contactable around the clock?

Are all your emergency contacts familiar with your emergency procedures?

Have you identified contacts at all of your business sites?

Do your emergency contacts know how to turn off all gas-using equipment at all sites safely?

Do you have a visible site plan identifying the location of each gas-using appliance?

Have you tested your plan so that each site is aware of its responsibilities?
What to do in a power emergency

It’s possible that a gas emergency could lead to a power emergency. However, a power emergency can also be caused by many other factors, as shown around the world in historical power failures:

- In Italy in 2003, 57 million people were affected by a tree striking two interconnectors in Switzerland.
- On the east coast of the US, also in 2003, 50 million people were affected by tree contact with power lines.
- In Western Europe in 2006, 10 million people were affected when transmission lines were switched out to allow passage of a ship, leading to system overload.

In the UK major power failures are very rare. Failures generally affect smaller numbers and are restored as quickly as possible. Even though the 1987 hurricane affected 1.5 million people, 1 million had power restored within 24 hours.

Severe storms are the most common cause of widespread power loss in Britain, and analysis of such events shows how important it is to manage trees near overhead lines. Our Central Networks business looks after a network involving thousands of miles of wires and cables, stretching from South Yorkshire to South Gloucestershire, and from the East coast of England to the Welsh border. They have a team dedicated to working throughout the year to ensure trees are kept clear of overhead lines in order to minimise the potential of a power failure.

If a power emergency does occur, the local power Distribution Network Operators (DNOs) will be asked to shed load by cutting off power to selected postcodes in their area, usually for up to three hours at a time. This helps to spread the burden of load shedding across the country and is known as rota disconnections.

A National Emergency Plan is in place which sets out a framework for industry and government to work together to manage a major supply emergency. In some circumstances local and regional resilience plans may need to be activated.

In the event of a power emergency, Distribution Network Operators (DNOs) have different systems to let businesses know which postcodes are going to be turned off, at what time and for how long.
What to do if you have a power cut

If you have a power emergency, you'll need to contact your local power Distribution Network Operator. Although E.ON may be your supplier, the local operator is responsible for the power network.

If you unexpectedly lose your power supply

1. Check to see if nearby businesses have lost their supply too.
2. If they have not, check your trip switch, if you have one.
3. If it has operated, switch off all appliances and reset the trip.
4. Contact your local power Distribution Network Operator (DNO). If you are unsure which DNO covers your area, check in the phone book under Electricity.

England and Wales

<table>
<thead>
<tr>
<th>DNO</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Networks East</td>
<td>0800 056 8090</td>
</tr>
<tr>
<td>Central Networks West</td>
<td>0800 328 1111</td>
</tr>
<tr>
<td>EDF (East of England)</td>
<td>0800 783 8838</td>
</tr>
<tr>
<td>EDF (London)</td>
<td>0800 028 0247</td>
</tr>
<tr>
<td>EDF (South East)</td>
<td>0800 783 8866</td>
</tr>
<tr>
<td>Manweb</td>
<td>0845 272 2424</td>
</tr>
<tr>
<td>Northern Electric</td>
<td>0800 66 8877</td>
</tr>
<tr>
<td>Southern Electric</td>
<td>0845 770 8090</td>
</tr>
<tr>
<td>United Utilities</td>
<td>0800 195 4141</td>
</tr>
<tr>
<td>Western Power South Wales</td>
<td>0800 052 0400</td>
</tr>
<tr>
<td>Western Power South West</td>
<td>0800 365 900</td>
</tr>
<tr>
<td>Yorkshire Electricity</td>
<td>0800 375 675</td>
</tr>
</tbody>
</table>

Scotland

<table>
<thead>
<tr>
<th>DNO</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scottish Hydro</td>
<td>0800 300 999</td>
</tr>
<tr>
<td>Scottish Power</td>
<td>0845 27 27 999</td>
</tr>
</tbody>
</table>
Business continuity planning

Business continuity planning (BCP) is the development of a plan showing how an organisation will restore, partially or completely, interrupted critical functions after an emergency, or period of extended disruption. Incidents may be local incidents, such as a local power cut or building fire, regional incidents like flooding, or national/global incidents like pandemic illnesses. Any plan must be realistic and easy to use during a crisis. For a small business it may simply be a printed manual stored offsite, containing:

- names, addresses, and phone numbers for the crisis management team
- contact details for all staff
- clients and vendors contact information
- location of the offsite backup data and restoration process/IT support contact details
- copies of insurance contracts
- other critical materials necessary for organisational survival.

A more complex manual may include:

- an outline plan for a secondary work site
- technical requirements and readiness
- regulatory reporting requirements
- work recovery measures
- the means to reestablish physical records
- details of how to establish a new supply chain or production centre.

The Civil Contingencies Act 2004 is a statute that instructs all emergency services and local authorities to actively prepare and plan for an emergency. Under the Act, local authorities have the legal obligation to actively promote business continuity to organisations in its area. Your local authority should be able to provide you with more information on business continuity, or see the useful links section at the back of this guide for national organisations.

An estimated 48% of organisations do not have a business continuity plan. Of those organisations with a plan, over two thirds rehearse their plans. Seventy five percent of those who had exercised their plans said that the exercises had revealed shortcomings.

Source: Chartered Management Institute
Energy management

The energy market
There’s always been a strong relationship between UK power and UK wholesale gas prices because many power generation plants in the UK use gas as a fuel.

Previously gas was transported through a network of pipelines which only served specific geographic areas. The introduction of Liquefied Natural Gas (LNG), where gas is temporarily converted to a liquid form, enables transport by sea and train to any location with a regasification terminal. Here the LNG is reheated and turned back into gas. Because LNG takes up about 1/600th the volume of natural gas in its gaseous state, it’s much more cost-efficient to transport over long distances where pipelines do not exist.

This flexibility enables gas to be traded while it’s being transported at sea ensuring the supplier gets the maximum price for the shipment. Following Hurricane Katrina during the winter of 2005/06 commodity prices in the US rose so they were higher than those in Europe. LNG tankers heading for Europe changed course to benefit from the higher American market.

As our supply becomes more interconnected to not only European, but also global markets, these relationships are likely to increase in complexity, making it more difficult to predict price changes.

What is energy management?
In today’s energy market, management of energy costs is about more than negotiating the best price. We also need to consider how efficiently energy is used.

A closer relationship with your energy supplier can help too. By working together you can find more ways to manage procurement and consumption and respond to changes in the energy market more effectively.

With a better understanding of the energy market and your business consumption, you will be able to do more to control costs.
Managing your business energy

By managing the way you buy and use energy, it’s possible to reduce the impact of price fluctuations on your bottom line. The following six steps will help you start to manage your business energy.

Step One
Make someone responsible.
Appoint someone as the ‘energy champion’ of your organisation. Looking after energy might not be a full-time job, but it should have the backing and recognition of everyone, including top management.

The energy champion should be:
• Vigilant – looking out for waste and inefficiency
• Encouraging – motivating all staff to take an interest in energy efficiency
• Organised – responsible for developing a programme of duties and monitoring activities
• Active – recommending improvements and where necessary cost effective investment.

Step Two
Establish the facts.
Measure how much energy your organisation is currently using. Energy use quite often goes unaccounted for. Estimated energy bills and infrequent monitoring of both expenditure and actual usage means you could find it difficult to account for how your energy is being used and how much it costs.

A vital step towards reducing energy costs and increasing efficiency is to keep a close eye on how much you’re actually using. To help gain control of the situation you should:

• See what past information is available by reviewing energy invoices and analysing the data month on month or year on year.
• Ensure you carry out regular in-house meter readings for all major fuels. By providing your own, accurate meter readings, you can ensure your bills are up to date, and this could help pinpoint periods of particularly high energy usage. If necessary, sub-meter important areas of use.
• Make an inventory of all equipment around the business that uses large amounts of energy. Ensure you know when the equipment is likely to be in use, and what the energy rating is. Carry out spot checks to make sure equipment is not being used unnecessarily.
• Walk around the building to assess when and where energy is used. Investigate energy usage outside normal working hours, when cleaning for example.

• Speak to colleagues about energy wastage – they might have identified areas of high usage or particular wastage but not known what to do about it.

Step Three
Compare your performance.
Use your current energy use as a benchmark to compare your consumption with similar businesses, previous monitoring periods or to set targets.

Collecting data on past energy usage will allow you to make comparisons over time. Once you have collected enough information, you can benchmark consumption against either your previous performance or against other sites or businesses.
Step Four
Identify the culprits.

Find the most obvious areas of waste and identify where investment is needed. At the same time as monitoring and comparing, it’s worth trying to identify where savings can be made.

This can range from a simple identification of waste to a detailed investigation into ‘best practice’ technologies. Examples of activities might be:

- Walking through the buildings at different times, particularly during ‘quiet periods’ and out of hours, and spotting where things can be turned off.
- Keeping an eye on seasonal changes and the setting of heating, lighting and air conditioning systems.
- Briefing out of hours staff (eg security and cleaning staff) to switch equipment off when they leave the building/carry out security checks.
- Identify the big energy users, and identify equipment and techniques that can help to cut costs.

Step Five
Plan and implement.

Work out an action plan to make the company more energy efficient and competitive, then implement it involving all key staff.

When you know what energy you’re using, where you’re using it and how it can be saved, you’re in a position to develop a strategy to cut energy use. Key steps should be:

- Draw up a hierarchy of activities – starting with no cost/low cost actions, then medium-term modifications and finally long-term investments.
- Obtain the interest and commitment of others in drawing up your list of priorities. For it to work, everybody within the business must take ownership of the plan.
- Set out a timetable of tasks and targets, and say who will be responsible for them.
- Get the approval of your managers/owners of the business.
- Let everybody know and then make it happen.

Step Six
Control and monitor.

Keep your control system under constant review. For energy efficiency to be an ongoing, living thing, planned actions need to be tracked, followed-up and eventually evaluated.

The evaluation should be fed back to management and all staff who have been involved in the process, making them aware of how and where progress is being made. Constant emphasis on improvement will make ‘energy efficiency thinking’ second nature until it eventually becomes part of the ‘culture’ of the organization.

Progress should be continuous, so your technical ability, in terms of monitoring equipment and knowledge, must grow until the evaluation, choice and operation of efficiency equipment and techniques become second nature.

Going full circle, and back to the early steps of comparison, identification, planning, implementation and so on, makes the steps a virtuous circle of energy efficiency improvement.

If you’re an E.ON customer, your Account Manager will be pleased to discuss these ideas and how they could be implemented within your business.
Here are some useful links to key industry information sources as well as links to general Government, professional and trade bodies.

Public sector
- Government departments bodies
 - Department of Energy and Climate Change www.decc.gov.uk
 - Department for Business Enterprise & Regulatory Reform www.berr.gov.uk
- Consumer Focus www.consumerfocus.org.uk
- Health and Safety Executive www.hse.gov.uk
- Market Transformation Programme www.mtprog.com
- The Carbon Trust www.carbontrust.co.uk
- The Energy Saving Trust www.est.org.uk

Professional organisations and trade bodies
- British Compressed Air Society www.britishcompressedairsociety.co.uk
- Chartered Institute of Building Services Engineers www.cibse.org
- Confederation of British Industry www.cbi.org.uk
- Heating and Ventilating Contractors Association www hvca.org.uk
- Institution of Gas Engineers and Managers www.igem.org.uk
- Joint Office of Gas Transporters www.gasgovernance.com
- Federation of Environmental Trade Association www.feta.co.uk
- The Business Continuity Institute www.thebci.org
- The Combustion Engineering Association www.cea.org.uk
- The Energy Institute www.energyinst.org.uk
- The Energy Systems Trade Association www.esta.org.uk
- The Institute of Refrigeration www.ior.org.uk
- The Lighting Industry Federation www.lif.co.uk
- Oil & Gas UK www.oilandgas.org.uk

General sources of information
- ALARM - The National Forum for Risk Management in the Public Sector www.alarm-uk.com
- Combined Heat and Power Association www.chpa.co.uk
- Continuity Central www.continuitycentral.com
- Petroleum Economist www.petroleum-economist.com
- UK Centre for Economic and Environmental Development www.ukceed.org
- The Carbon Trust www.carbontrust.co.uk
- The Energy Saving Trust www.est.org.uk
- E.ON is not responsible for the content of external sites and addresses.
 All addresses are correct at the time of printing.
Key industry contacts

If you are an E.ON customer and have any questions or concerns about security of supply please contact your Account Manager.

1. **Health and Safety Executive**
 - (1G) Redgrave Court, Merton Road, Bootle, Merseyside L20 7HS
 - Telephone: 0845 345 0055
 - Supply information - www.hse.gov.uk/gas/supply/information.htm

2. **National Grid**
 - 15 Marylebone Road, London NW1 5JD
 - Telephone: 0845 605 6677
 - Gas Balancing Alerts - www.nationalgrid.com/uk/gas/operationalInfo/GBA/
 - Daily Summary - www.nationalgrid.com/uk/gas/data/dsr/

3. **Met Office (Weather)**
 - Met Office, Fitzroy Road, Exeter, Devon EX1 3PB
 - Telephone: 0870 900 0100
 - Weather updates - www.metoffice.gov.uk/weather/europe/uk/warnings.html

4. **Ofgem**
 - 9 Millbank, London SW1P 3GE
 - Telephone: 020 7901 7000
 - www.ofgem.gov.uk
 - Demand side working group - www.ofgem.gov.uk/Markets/WhiMkts/CustandIndustry/DemSideWG/Pages/DemSideWG.aspx